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ABSTRACT

Nonequilibrium quantum field theory deals with the situations in'which the
physical quantitics are time-dependent.In-this work; the closed-time-path/integral and
the 2-paricle-arreducible formalism used-to”formulate the nonequilibrium quantum
field theery ate reviewed. These methods are then used to_derive the dynamical
equations satisfied by thewmean-fields—and-the_ptopagators of the nonequilibrium
O(N) scalar field theoryswith quarticself-interactionss The dynamical equations

obtained are coupledequations‘satisfied-by the.meand fields and the propagators.

Keywords: nonequilibrium quantum field theory, O(N) model, 2-particle irreducible

formalism, closed-time path integral.

Introduction

Nonequilibrium quantum field theory has been of interest among
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theoretical physicists during the past several years, due to the fact that many
important phenomena in particle physics and cosmology occur in the nonequilibrium
situation. Unlike the conventional quantum field theory, nonequilibrium quantum
field theory employs the~€losed-timed path inteégral technique and the 2-particle
irreducible formalist, whichymay beunfamiliar t6 many physicists. The closed-time
path integral smethod "(CTP) wasfirst~deyeloped by, Schwinger and later on
generalized by Keldysh,and'the unified approach.applicable tosboth equilibrium and
nonequilibriumsystems was reviewed by Chou, Su,.Hao, and Yur (1984). Along with
the CTP techniquey the 2-particle itreducible formalism (2PI), which was introduced
by Cornwall, Jackiw_and, Tomboulis (1974), is/ d hecessary, tool for nonequilibrium
quantum field/theory. By using-the CTP-and/ 2P1; nonéquilibrium quantum field
theory _allows wus. to ‘treat the propagators-as the independent quantities, ‘which is
different from the 'conventional quantam-field theory. In/this note, we will, therefore,
begin with a brief review of the concepts of the elosed<time path integration and the

2-particle irreducible-formalism;, and then-go on to analyze the O(N) scalar field

theory with quartic—self-mteractions in the| nonequilibrium | setting. Since the
propagators ‘arenow independent \variables, theére/ must exist dynamical equations
satisfied by propagators. Our, aim is-to-obtain these dynamical equations along with

the equations, satigfied by/the mean fields:

Objective
The purpose of this work was to _formulate monequilibrium O(N) scalar

field theory ‘with quartic self-interactions and.tofind “theydynamical equations

satisfied by the propagators in.this‘model-

Closed-time pathuintegrat

Before discussing the-closed-time-path integral formalism, we first recall
that an important object in the conventional quantum field theory is the generating
functional (or the vacuum-to-vacuum transition amplitude) in the presence of an
external source J, defined by Z[J]=(0(+o0)|U j (+00,—0)|0(-0)) , where U j (+o0,—0)

is the time-evolution operator linking the vacuum states in the infinite past and in the
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infinite future. For a scalar field theory, U j(+00,—o0) =T (expi(H + ®J)/%), where H
and @ are the Hamiltonian and the scalar field, respectively, and T is the time-
ordering operator. In the above expression, an integral over d*x of the exponent is

understood without expli€itly Writing«t;-we-shall usé'this convention from now on. It

is important to nete that the wacuum states-in/the definition of U j (+o0,—c0) are the

ground states/atrdifferent time; and-itis possible.that these ground states are different
when the Systemyiinder eonsideration undergoes asnonequilibrium‘phase. Using the

generating funetional; the effective action/I[¢] is defined\as the diegendre transform
of W[J]=—=inIn(Z[3]), ie. T[4 =W[I—a), where ¢(x)=8W[I}/D(x), Using this
definition of g(x), on¢ can see that if the vacua in the“asymptotic past and in the far
future are equivalent.in the sense that the vacuum state in the-asymptotic past evolves
uniquely intg the vacuum state-in the far'future; @(x) is just the ground-state value of
the field operator d(x) at time_t= 2 “and’ the value of /#(x) \can be obtained by
solving the equation~dl[#]/d¢ = 0 , However, in the nonequilibfium situation in which

things change with time, all)we know are the initial conditions.of the system, and so
we cannot be-sure-if the vacuum state in-theinfinite past will-evolye uniquely into the
vacuum_state in“thefar future, Having no-idea:of what the-vacuuny'state in the far
future tooks like, it'is impossible to-Calculate the generating|functional defined above,
and\so the‘above formalism’fails:=Te-evercome.this. difficulty, one/introduces the
closed-time pathiintegral (CTP) formalism, with a new generating functional defined

by (Jordan, 1986 : 445,)
213153 g {060y U g, (00,4000 gor((roo,—8) [ 0(~0)) (1)

where U 3 (+o0,—0)w was “defined above,jand, U 3 (—o0,+20) is defined similarly but

with the anti-temporal ordering,_operator instead of the time-ordering one. The

interpretation is as follows. Starting with the ground state | 0(—0)) in the asymptotic

past, we evolve it using U 3 (+90,—0) (with the source J;) into the infinite future, and

then bring it back to the infinite past using U 1, (—o0,+0) (with the source J, ), where
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it becomes the initial ground state |0(—o0)) again. We thus see that this formalism
does not require any knowledge about things in the future; all we need to know are
the initial conditions at t =—o0. If we let W[J;,J,]=—-i7InZ[J{,J,], it is easy to see

that ¢(x) = (W/831 (X)) 3,=9, 1S, the' vacuumy expectation value of @ at time t= x°,

where the vacuum stateiat'time x°.is-the-one evolving from | 0(—«)) by U 3 (xY o).
It is important-to note that'the condition Jy = J,in“the defimtioniof #(x) results in

the disappearance of the)contributions from things at timeyt > X" in the calculation of
#(x) 4so that'the/causality.is|automatic.

The path integral \representation of Eq. (1) can be formulated using the
following trick. We first enlarge the size of the time dimension by a factor of two,
where t. runs from —oo\ to (+oo—in the first half] and/from + o back.to —eo in the
second half. (Thus'the time.dimension\has| the structure/of a closed loop, hence the
name "closed-time path integral.™) If we denote the scalar field by ®; (with the

source Ji) in-the-first half of the' time(dimension, and by-®, (with the source J, ) in

the second half; it is-clear'that the path-integral répresentation of Eq. (1) takes the
formy(Jordan, 1986 :446)

2{J,,3,,]1= [D®|DD; CXP%{(S[QH]Jr 3@ ) (SD, 14 3,05 )b (2

subject to ‘the conditions thatz®4 (+0) = @, |(+0)>and J; (#0) = J5(($0) /Note that the
minus sign o front ‘ofithe @, part-of-the exponent came from the fact that @,
propagates backward in time while-the-integral over time€ is defined in the forward
time direction. Even though we formally have only one'sealarfield propagating along
two time branches (ene from“t=—w (to +o, and the other from t=+o to —o),
Z[Jy,J,] has the mathematical structure of.a-functional integral over two scalar

fields, so we can evaluate it in the conventional way. Introducing the metric

Cab = ¢ =diag(1,-1) (a,b=1,2), we can use it to raise and lower the indices

according to the rule J2 =c®J, and ®? =c®®,,. Using this metric, the generating

functional can be written in the more compact form as
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Z[32]= D¢, exp%(S[cba]Ha@a), 3)

where S[®@,]= S[@l]—S*[dbz]. The corresponding_effective action is defined as a

Legendre transform’of W{J®@ |& ~ikin(Z[32}),

o 1=W[I %] -3 4

where /¢, (x).=0W/&J® (x). The rest-of the calculation\is, thesSame ‘as that in the
conventional qoantum field theory. A minute thought teveals that the vacuum

expectation value.of the. original scalar field 4s' ¢(x)y= oW/A%(x) | 3,=3,=05 which is

obtained by /solving\the equation dI/dg, =0, which, describes the time-

|¢1:¢2:¢
gvolution of #(x) (remember that, unlike ordinary quantum field theory, ¢(x) is time
dependent. in“the nonequilibrium’ situation):.It’ is\worth-mentioning that this time

evolution should respect/ the causality, since| ¢(x)”depends-on things that happened

only in its past, by censtruction.

Let us now considenthe-propagatorsiof the theory. We first recall that a
propagator is the yacuum expectation value-of the time-ordering produet;of two scalar
fields. In'the closed<time path-integral formalism, this time orderingris defined to be
along the-direction of-the closed-time path. As there.are two scalar figlds, one for
each time ‘branch,\t\is cleat that there-are four types of/propagators; the first two
being formed /by. the, fields on the same time branch, while the others being

constructed from the fields*en different time-branches. Inthe functional method, these

propagators are obtainedby performing the funetional differentiation on W[J 2],

é\N[‘]la‘]Z]

G,y (Xsxy= ,
ab ) &]a(x’)&]b(x)

©)

and then setting J; = J,, with the result:
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W[, d7]

WL, 3 = (T@(X)D(X)) =G (x,X) ©)
&7 (xD)A (X5 _3,-y
é‘z’\’_ﬂldli =(D)D(X)) =6 (X, X) ™
&J” ) (X315,
L HoE)Bpo)= 62 (xx) ®)
a7 (X' )8d(x) 0,233
Sl =(F@X)OH)) =G (% X) ©)
8200025 25—

where Gg,G..G_, Gp \are-Feynman, positive/negative and ‘Dyson propagators,
respectively.. Observe that the ‘Dyson-propagator is defined using the reverse time
ordering, due to the fact that it’contains only the fields on the reverse time branch (on
which time runs backward). Thus, unlike-the:conventienal quantum field theory in
which only the Feynman propagator exists, there are four propagators that contribute
to each internal line-of a\Feynman (diagram./Sinee each interaction vertex is defined
on either forward er reverse time branch, itis not hard-to see that/a vacuum Feynman

diagram with 'n vertices in the conventional‘ quantum field theory may-be thought of

as describing 2", diggrams’in the-CTP formalism.

2-particledrreducible formalism

When dealing.with the nonequilibrium problem, e, are normally given an
information ‘about the probability-distribution’of the initial states (at t = — ), and then
asked what will*happen.in the future given these nitial conditions. It is clear that this
initial probability disteibution<is the thing thatiwas missing in the above formulation
of the closed-time path integral.which is_supposed to describe the nonequilibrium
system. This remark tells us that the CTP generating functional introduced previously
has to be modified in order to completely describe the nonequilibrium situation. It

turns out that the correct CTP generating functional takes the form
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Z[31, 32, p1=TrU, (=0, 420)U 3, (+00,—0) p(—0)] (10)

where p(—) is the density operator at the initial time, which contains all information

about the probability distribution of initial statés;-and the trace is taken over all initial

states. The corresponding path integral representation is found to be

Z[J* p]= [DP, eXlOé'{(S[CDa]+J 20K Py () o) R (—0)), (1)

where /(D4(=0) | o@D, (+o0)) |is the matrix element of ‘the ‘density ‘operator with
respect to the initial states. Here| the functional integral over ®, is subject to the
constraint that feach field approaches its given initial state ®,(—©) as t+» —oo, and
the functional integration over the initial states (®(-+¢) and @, (—o)).is understood
without explicitly writing.it.

Since the matrix elements-of the density operator/cannot be identically

zero, it is tempting to-express them in the exponential form-as(Calzetta & Hu, 1988 :

2883)

(D) (b) | pLD(=0)) :exp(;'_l K[cba]] (12)
where

K[®, 1~ K+Ka(x)(’Da(x)+%Kab(x, VD 5 (YD, (V) ... (13)

In the ‘above/expression of “Kfd@4T, the integration over all ‘spacetime coordinates

should be‘undérstood witheut having to write it, afid-all kernels K/K 2, K, ... must
be non-vanishing only‘at t =", so that K{®,] contains information only at the
initial time. With this form/of/K[®4}; all information about the initial state of the

system is thus contained insthe kernels. Using the.above form of the matrix elements,
the generating functional now contains an infinite number of nonlocal terms, and so it
is a formidable task to evaluate this functional integral. To simplify this task, one
might try to retain only a small number of terms in the infinite series, but this will

result in the loss of some information about the initial probability distribution.
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Anyway, if we insist on doing this and keep only the lowest-order nonlocal term, the

generating functional becomes
Z[313 K= [Dd7 expé{S[(Da]-irJ o, +% K® (X, y)0, 0Dy} (14)

Let W[J?, K2 = —ifnZ[3 2, K 2 };-we-define

SW[02, Kab

e L (15)
JB Ky

LT L 4+ nGab) (16)
K 2

and then define the effective actionas-a Legendte transform of W[J,, K1,

1
I Gap] =W K2 =d%, # K2 (Bath, + NG ). (17)
which implies
5r[¢aaGab] d| ¢ ab ba
s =] — K K*%), 18
ot 3 P ( +K™) (18)
5r[¢aaGab]:_EKab' (19)
5B 45 2

It 1s easy to'see that’ ¢,(x) /is'the expectation value of D, (x) at time x? . /To find the
meaning of G,y we/first express @, (x) as the sum of.its‘expeetation value ¢, (x)

and the fluctuation @, (X), ©, =@, +¢4,solthat the action becomes

Slad, 1 5°S(gs]

Sida +.a]1= S[@a]+ 56, a 2 5450,

P2+ SQ> (20)

with Sq describing the interactions among the field fluctuations, and the functional

integral over ® 4 becomes an integral over ¢,. By imposing the initial conditions that
Py (t =—00) =D, (—0), we see that ¢, vanishes at t =—oo. If we also assume that ¢,
also vanishes at t =+, then we can evaluate the functional integral over ¢, in the

same way as we did in ordinary quantum field theory, without having to worry about
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the constraints due to the initial conditions. With this field decomposition, we can
evaluate the generating functional, and subsequently obtain the effective action with
the result

2 b
IB I MG, 1)
O O 2

r[¢a,Gab]=S[¢a]+Z

where T, /is the sum of 2-particle irreducible~(2RI)" diagtams produced by field
fluctuations;«To" verity this property of-I';, we substitute the-above\result into Eq.

(19), with the result

578/ /2 o,

i(G )L =—K h 2
Opaopy /I Kogp

(22)

which implies.that Gy \is the propagator of the field fluctuations ¢, if K3 is set to

zero. Using the fact that (G_])ab ,which-is equal to, o, /3G 4, plusia classical inverse

propagator (without quantum/cotrections), is\the stim of HPIdiagrams, we conclude

that ', is the sum of 2Pl diagrams with-G,;,/as the propagators, and therefore can be

evaluated without-much difficulty.-It should’be'noted that the propagaters in Eq. (22)
are the same as the-on¢ defined\in Eq. (5)-"Idy,Gp1is thus kiiown as the 2PI

effective action(Cornwall, Jackiw_& Tomboulis, 19741 2431). Once [, has been
evaluated, /we can,substitute the resulting effective action sback into Eqgs. (18) and
(19), and obtainythe\equations-for /determining ¢, and/G4, by.setting/J2 =K =0.
By setting\¢; =¢, = ¢, the equations-for-determining the field expectation value ¢

and the propagators-are obtained (€alzetta-& Hu, 1988% 2885).

Propagators of the nenequilibrium O(N) sealar field theory
We now use the formulation developed above to find the equations for

determining the expectation values of the fields and the propagators of the O(N)

spinless model. In this model, there are N scalar fields ¢i (i=1,2,...,N), and the

Y i
MydszauauonaUITes AT UNAANYKIIA ATIN 17
9 v

HAEMIFUNUIFINIINOIHEUNT NUITOGENBY ATIN 5



action, invariant under the action of an orthogonal group O(N) on the fields, with

quartic self-interactions, takes the form (Ramsey & Hu, 1997 : 669)

. O . . F - ) .
S e S ‘m2¢'¢’)‘m(5ﬂ¢'¢”2' (23)
The corresponding generating funetionalis-thus
ZIPKEP) = Do exp {ES[ng] + I8P + 3 K3Pal ok, (24)

Note /that there/are two. types of indices, the first one\denoted by ‘early roman

alphabets (a,h;¢,...) labels the time branches while the second one denoted by late
roman letters /(i, J;k;...) represents the O(N)indices.The corresponding effective
action then takes the form

hS2STgh] i
~‘¢?ng+5, (25)

r¢l.Gh 12 S[¢;]—%Tr1ne+ N
2%y

where ', ¢an be-obtained by summing over 2Pl'diagrams-produced by the following

interaction terms

i A i PN il ]
Soloyi= —m«ca%imawg 5050 +Z<cab6i,-<oa%’ )y (26)

Figure 1:/The-double-bubble,and sunset diagrams.
The lowest-order contribution.te~F5"consists of two-loop diagrams in the

forms of the double-bubble and sunset diagrams as shown in Fig. 1. To the lowest

order, the result is (Ramsey & Hu, 1997 : 672)

2
A, 1 abed i kI ik i
r,= i {_EC (G, (X, )G (X, X) + 2G46 (X, X)Gy (X, X)) 5
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14 abed catbed shoL, (be,(x x)G I (x, X')G &K, (x,X')

+260, (6 x)GHE (%, X)L (%, X NS5} 7)

abed s Equalto. i dforya=b=c=d.=1, and is equal to -1 for

where Cgpeq =C
a=b=c=d =2./The-first term came from the double-bubble diagrams, while the

sunset diagrams”gave ‘the second~term containing “¢'s./Using the above result, we

obtain the'equations for determining the propagators

52SIgh () | i

. i N Cade54(X—X’){5ij5k|ng +25ki5|jG(|;((;}
O (X)0da (X)

i(G 3 (x.X)

Ih/l acde he'de Kl KT’ k4l ~KI' ~mn
2N2 5kk’5ll 5Im51n {¢c ¢ Gdd'G 2¢c ¢c’Gdd’G
+20l g6 Gy w20 PLGLICN + 288 gRG c } | (28)

and the ones for determining ¢;

A A A ’ i
€ (Q + m?) g0 mgbg%’éij A+ Nc:""b"o' 1{AGH <+ 5o (G + G )

N
—pdax z UL o x)=0 (29)
4N 2
valid at the-two-loop lével The nonlocal ternr 3 “™ (x;x") which appears above has the

explicit form

cm n_ ~cabd .c'a'b'd' ;i mi’ ~ jj'~ KKk mj’ ~ jk' ~ki’
M (x,x')= ¥ GeH{Gan G Gag +2G 2 G Ga'

i e Ui~ kk' ~
+ CA Gy Ga+ 2GL Ghi G Y0k Sk Siir- (30)

By setting ¢1i =¢; =¢i in_the“above equations, we obtain the set of equations for

determining the expectation values-of-the~ficlds ¢' and the propagators of the
nonequilibrium O(N) model, which can be solved once the initial conditions have

been specified.
As mentioned earlier, causality is very important and so the dynamical
equations for the mean fields ¢; should respect it. This means that the nonlocal term
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2" (x,x'), generally referred to as the memory function, must vanish unless

x> x % To show that this is indeed the case, we define the retarded, advanced and

correlation Green's functions.-by==Gr-=i(Gg -G_), Gp=-i(Gp-G,) and
Gc =(G_+G,), respectively-By-setting ¢]i = ¢; = ¢i and writing all propagators in
Eq. (30) in terms of \GRr., G, and-Ges-it-can be verified that,all terms on the right
hand side of Eq. (30) are’proportional to the retarded Gréen's.function, which means

that the fionlecal term/2°™ (x, x') respects the causalityThus causality,is respected by

all equations’ which determine the field expectation values, and the propagators as

expected.

Conclusions-and discussion

The CTP.technique and-the-2PL formalism twere used to formulate the
nonequilibrium ‘\quantum field-theory.~The-propagators are treated as independent
variables and their-dynamical gquations, can be obtained from the effective action. A

specific case of the-nonequilibrium [O(N) | scalar | field_theory with quartic self-

interactions ‘was-analyzed, ‘and. the equations/which describe the dynamics of the
theory” were |obtained. Unfortunately, these. dynamical equations détérmining the
mean-field and the propagators-are coupled-to.each other. Due to their complicated
forms, solving these equations-is-a-formidable task. Despite/this difficulty, we found
that these gquations respect the causality as|they should:

Our suggestion is that-one-may-try to6 solve.thése dynamical equations by
numerical\methiods. But ‘since the propagators are mnormally scomplex functions, a
convenient way is to/split thespropagators inte-their real\and imaginary parts before

solving the dynamical equations;numerically
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