ON 0-MINIMAL IDEALS IN A DUAL ORDERED SEMIGROUP WITH ZERO

THAWHAT CHANGPHAS, WICHAYAPORN JANTANAN Received March 5, 2013; revised December 18, 2013

ABSTRACT. An ordered semigroup S is called a dual ordered semigroup if l(r(L)) = L for every left ideal L of S and r(l(R)) = R for every right ideal R of S where r(A) and l(A) denoted the right annihilator and the left annihilator of a nonempty subset A of S, respectively. The main result of this paper is to show the existence of 0-minimal ideals of a dual ordered semigroup.

1 Preliminaries Dual ring credited to Baer [1] and Kaplansky [8] have been widely studied (see [3], [5], [4], [9]). Using only the multiplication properties of the elements of a ring, Schwarz ([10], [11]) introduced and studied dual semigroups. Let S be a semigroup with zero 0 and let A be a nonempty subset of S. The left annihilator of A, denoted by l(A), is defined by $l(A) = \{x \in S \mid xA = \{0\}\}$. Dually, the right annihilator of A, denoted by r(A), is defined by $r(A) = \{x \in S \mid Ax = \{0\}\}$. The semigroup S is said to be dual if l(r(L)) = L for all left ideals L of S and r(l(R)) = R for all right ideals R of S. In [11], the author proved the existence of 0-minimal ideals of a dual semigroup. The purpose of this paper is to extend the results to ordered semigroups.

A semigroup (S, \cdot) together with a partial order \leq on S that is *compatible* with the semigroup operation, meaning that for $x, y, z \in S$,

$$x < y \Rightarrow zx < zy, xz < yz,$$

is called an ordered semigroup ([2], [4]). If A, B are nonempty subsets of S, we let

$$AB = \{xy \in S \mid x \in A, y \in B\},\$$

$$(A) = \{x \in S \mid x \le a \text{ for some } a \in A\}.$$

If $x \in S$, then we write Ax and xA instead of $A\{x\}$ and $\{x\}A$, respectively.

If A, B are non-empty subsets of an ordered semigroup (S, \cdot, \leq) , then it was proved in [6] that the following conditions hold:

- (1) $A \subseteq (A]$;
- (2) $A \subseteq B \Rightarrow (A] \subseteq (B]$;
- (3) ((A)] = (A);
- (4) $(A|(B) \subseteq (AB)$;
- (5) $(A \cup B] = (A] \cup (B];$
- (6) ((A](B]] = (AB].

 $^{2010\} Mathematics\ Subject\ Classification.\quad 06F05\ .$

Key words and phrases. semigroup, dual semigroup, ordered semigroup, dual ordered semigroup, left (right) ideal, 0-minimal ideal, left (right) annihilator.

The concepts of left ideals, right ideals and (two-sided) ideals in an ordered semigroup have been introduced in [6] as follows: let (S, \cdot, \leq) be an ordered semigroup. A nonempty subset A of S is called a *left ideal* of S if

- (i) $SA \subseteq A$;
- (ii) if $x \in A$ and $y \in S$ such that $y \leq x$, then $y \in A$.

A nonempty subset A of S is called a *right ideal* of S if $AS \subseteq A$ and (ii) holds. If A is both a left and a right ideal of S, then A is called a (two-sided) *ideal* of S. It is known that, for $x \in S$, (Sx] is a left ideal of S, (xS] is a right ideal of S and (SxS] is an ideal of S.

An element 0 of an ordered semigroup (S, \cdot, \leq) is called a zero [2] if

- (i) 0x = x0 = 0 for all $x \in S$;
- (ii) $0 \le x$ for all $x \in S$.

Clearly, $\{0\}$ is an ideal of S which will be denoted by 0. To exclude the trivial case, if an ordered semigroup (S, \cdot, \leq) has a zero 0 then we assume that $S \neq \{0\}$.

Let (S, \cdot, \leq) be an ordered semigroup with zero 0. A left ideal A of S is said to be 0-minimal if $\{0\} \neq A$ and $\{0\}$ is the only left ideal of S properly contained in A. Similarly, we define 0-minimal right ideals and 0-minimal two-sided ideals.

Let (S, \cdot, \leq) be an ordered semigroup with zero 0. Analogously to [11], if A is a nonempty subset of S, then the *left annihilator* of A, denoted by l(A), is defined by

$$l(A) = \{x \in S \mid xA = 0\}.$$

Dually, the right annihilator of A, denoted by r(A), is defined by

$$r(A) = \{x \in S \mid Ax = 0\}.$$

It is easy to see that l(A)A = 0 and Ar(A) = 0.

Lemma 1.1 Let (S, \cdot, \leq) be an ordered semigroup with zero 0 and A, B nonempty subsets of S. Then the following statements hold:

- (1) l(A) is a left ideal of S and r(A) is a right ideal of S;
- (2) $A \subseteq r(l(A)), A \subseteq l(r(A));$
- (3) if $A \subseteq B$, then $l(B) \subseteq l(A)$ and $r(B) \subseteq r(A)$;
- (4) if $A_{\alpha} \subseteq S$, $\alpha \in \Lambda$, then

$$l(\bigcup_{\alpha} A_{\alpha}) = \bigcap_{\alpha} l(A_{\alpha}), \ r(\bigcup_{\alpha} A_{\alpha}) = \bigcap_{\alpha} r(A_{\alpha}).$$

- *Proof.* (1) We will show that l(A) is a left ideal of S. Dually, we have r(A) is a right ideal of S. Clearly, $l(A) \neq \emptyset$. If $x \in S, y \in l(A)$, then (xy)A = x(yA) = 0, and so $xy \in l(A)$. Let $x \in l(A)$ and $y \in S$ such that $y \leq x$. Then $yA \subseteq (yA) \subseteq (xA) = 0$, and hence $y \in l(A)$.
 - (2) Since l(A)A = 0, so $A \subseteq r(l(A))$. Similarly, $A \subseteq l(r(A))$.
- (3) Assume that $A \subseteq B$. Let $x \in l(B)$. Since $A \subseteq B$, we get $xA \subseteq xB = 0$, and so $x \in l(A)$. Thus $l(B) \subseteq l(A)$. Similarly, $r(B) \subseteq r(A)$.
 - (4) The proof is straightforward.

2 Main Results Analogously to [11], we define a dual ordered semigroup as follows:

Definition 2.1 Let (S, \cdot, \leq) be an ordered semigroup. Then S is called a dual ordered semigroup if

- (i) l(r(L)) = L for all left ideals L of S;
- (ii) r(l(R)) = R for all right ideals R of S.

Lemma 2.2 Let (S, \cdot, \leq) be a dual ordered semigroup with zero 0.

(1) If $\{R_{\alpha} \mid \alpha \in \Lambda\}$ is a family of right ideals of S, then

$$l(\bigcap_{\alpha} R_{\alpha}) = \bigcup_{\alpha} l(R_{\alpha}).$$

(2) If $\{L_{\alpha} \mid \alpha \in \Lambda\}$ is a family of left ideals of S, then

$$r(\bigcap_{\alpha} L_{\alpha}) = \bigcup_{\alpha} r(L_{\alpha}).$$

- (3) l(S) = r(S) = 0.
- (4) If L is a 0-minimal left ideal of S, then r(L) is a maximal right ideal of S.
- (5) If A is a 0-minimal ideal of S, then r(A) and l(A) are maximal ideals of S.

Proof. For (1) and (2), the proofs are straightforward.

(3) We have

$$r(S) = r(S \cup l(0)) = r(S) \cap r(l(0)) = r(S) \cap 0 = 0.$$

Similarly, l(S) = 0.

- (4) Assume that L is a 0-minimal left ideal of S. Since $L \neq 0$, $r(L) \neq S$. Let R be a proper right ideal of S such that $r(L) \subseteq R$. Then $0 \neq l(R) \subseteq l(r(L)) = L$, and thus l(R) = L. Hence R = r(l(R)) = r(L).
- (5) Assume that A is a 0-minimal ideal of S. We will show that r(A) is a maximal ideal of S. It is easy to see that r(A) is an ideal of S. Let M be a proper ideal of S such that $r(A) \subseteq M$. Then $0 \neq l(M) \subseteq l(r(A)) = A$, and thus l(M) = A. Hence M = r(l(M)) = r(A). Therefore, r(A) is a maximal ideal of S. Similar arguments show that l(A) is a maximal ideal of S.

Lemma 2.3 If (S, \cdot, \leq) is a dual ordered semigroup with zero 0, then $a \in (Sa]$ and $a \in (aS]$ for every $a \in S$. In particular, $(S^2] = S$.

Proof. Let $a \in S$. Since (Sa] is a left ideal of S, by assumption, we have l(r((Sa])) = (Sa]. If $x \in r((Sa])$, then (Sa]x = 0, and hence (Sax] = 0. By Lemma 2.2, $ax \in r(S)$, and so ax = 0. This proves that $a \in l(r((Sa]))$. Hence $a \in (Sa]$. Dually, $a \in (aS]$.

Lemma 2.4 Let (S, \cdot, \leq) is a dual ordered semigroup with zero 0 and $a \in S$. If (aS] = 0 or (Sa] = 0, then a = 0.

Proof. This follows by Lemma 2.3.

Lemma 2.5 Let (S, \cdot, \leq) be a dual ordered semigroup with zero 0. If S = (aS] for every $a \in S \setminus \{0\}$, then S is itself a 0-minimal right ideal of S.

Proof. Assume that S = (aS] for every $a \in S \setminus \{0\}$. Let A be a right ideal of S such that $A \neq \{0\}$. Then there exists $a \in A \setminus \{0\}$. By assumption, S = (aS], and thus S = A. This shows that S contains only the right ideals S and $\{0\}$. Therefore, the assertion follows.

We now prove the main result analogue to ([11], Theorem 4).

Theorem 2.6 Let (S, \cdot, \leq) be a dual ordered semigroup with zero 0. Every nonzero right ideal of S contains a 0-minimal right ideal of S.

Proof. Let R be a non-zero right ideal of S. There are two cases to consider:

Case 1: S = (aS] for every $a \in S \setminus \{0\}$. By Lemma 2.5, we have S is itself a 0-minimal right ideal of S. Therefore, R contains a 0-minimal right ideal of S.

Case 2: $(aS] \neq S$ for some $a \in S \setminus \{0\}$. We have $a \in (aS] \subseteq S$. Since $a \in (Sa]$, there exists $y \in S$ such that $a \leq ya$. If $y \in l(aS)$, then yaS = 0, and so (yaS] = 0. Hence ya = 0. This is a contradiction. This shows that $y \notin l(aS)$ which implies $y \notin l((aS])$. If l((aS]) = 0, then (aS] = r(l((aS])) = r(0) = S. This is a contradiction. We have $l((aS]) \neq 0$.

Let L_0 be the union of all left ideals of S which does not contain y. Since

$$l((aS]) \subseteq L_0 \neq S$$
,

it follows that

$$r(L_0) \subseteq r(l((aS])) = (aS] \subseteq S$$

and $r(L_0) \neq 0$.

We will show that $r(L_0)$ is a 0-minimal right ideal of S. Let R_1 be a right ideal of S such that $0 \neq R_1 \subset r(L_0)$. Then $L_0 \subset l(R_1) \subset S$, and thus $y \in l(R_1)$. Since $l(R_1)R_1 = 0$, $yR_1 = 0$. Since $l((aS]) \subseteq L_0$, $R_1 \subseteq r(L_0) \subseteq (aS]$. If $x \in R_1 \subseteq (aS]$, then there is $z \in S$ such that $x \leq az \leq yaz = 0$, and thus $R_1 = 0$. This is a contradiction. Hence the proof is completed.

Theorem 2.7 Let (S,\cdot,\leq) be a dual ordered semigroup with zero 0. Every nonzero left ideal of S contains a 0-minimal left ideal of S.

Proof. This can be proved similarly to Theorem 2.6.

Corollary 2.8 Let (S,\cdot,\leq) be a dual ordered semigroup with zero 0. Every right ideal R of S such that $R \neq S$ is contained in a maximal right ideal of S.

Proof. Let R be a right ideal of S such that $R \neq S$. Since l(R) is a left ideal of S, by Theorem 2.6(6), l(R) contains a 0-minimal left ideal L_0 of S. Since $0 \neq L_0 \subseteq l(R)$, we have $R \subseteq r(L_0) \subset S$, By Lemma 2.2, $r(L_0)$ is a maximal right ideal of S.

Theorem 2.9 Let (S, \cdot, \leq) be a dual ordered semigroup with zero 0. Every 0-minimal left ideal of S is contained in a 0-minimal ideal of S.

Proof. Let L_0 be a 0-minimal left ideal of S. By Lemma 2.3, $L_0 \subseteq (L_0S]$. We have $(L_0S]$ is a 0-minimal ideal of S. This proves the assertion.

We will show that $M_0 := (L_0 S]$ is a 0-minimal ideal of S. It is easy to see that M_0 is an ideal of S. Setting

$$Z = S \setminus r(L_0) := \{ z_{\alpha} \mid \alpha \in \Lambda \},$$

we have

$$M_0 = (L_0(r(L_0) \cup Z)) = (L_0 Z) = \bigcup_{\alpha \in \Lambda} (L_0 z_\alpha).$$

Note that for $a \in S$, $(L_0a] = 0$ or $(L_0a]$ is a 0-minimal left ideal of S. In fact: we assume that $(L_0a] \neq 0$. Let L be a left ideal of S such that $0 \neq L \subseteq (L_0a]$. Setting $L_1 = \{x \in L_0 \mid xa \in L\}$. It is easy to see that L is a left ideal of S. By the minimality of L_0 , we obtain $L = L_0$. Hence, $L = (L_0a]$.

Now, since $L_0 \subseteq M_0$, there exists $z_0 \in Z$ such that $L_0 = (L_0 z_0]$.

Let M be an ideal of S such that $0 \neq M \subseteq M_0$. We claim that $L_0 \subseteq M$. Suppose not, then

$$M = \bigcup_{\alpha \in \Lambda_1} (L_0 z_\alpha]$$

for some $\Lambda_1 \subseteq \Lambda$ such that $z_0 \notin \{z_\alpha \mid \alpha \in \Lambda_1\}$. Since $MS \subseteq M$, we obtain

$$\bigcup_{\alpha \in \Lambda_1} (L_0 z_\alpha] S \subseteq \bigcup_{\alpha \in \Lambda_1} (L_0 z_\alpha],$$

thus

$$\big(\bigcup_{\alpha\in\Lambda_1}(L_0z_\alpha](S]\big]=\big(\bigcup_{\alpha\in\Lambda_1}(L_0z_\alpha S]\subseteq\big(\bigcup_{\alpha\in\Lambda_1}(L_0z_\alpha]\big]\subseteq\bigcup_{\alpha\in\Lambda_1}(L_0z_\alpha].$$

Since

$$\big(\bigcup_{\alpha\in\Lambda_1}(L_0z_\alpha](S]\big]=\bigcup_{\alpha\in\Lambda_1}\big((L_0z_\alpha](S]\big]=\bigcup_{\alpha\in\Lambda_1}(L_0z_\alpha S],$$

we get $\bigcup_{\alpha \in \Lambda_1} (L_0 z_{\alpha} S] \subseteq \bigcup_{\alpha \in \Lambda_1} (L_0 z_{\alpha}].$

Let $\alpha \in \Lambda_1$. Since

$$(L_0 z_{\alpha} S] = ((L_0](z_{\alpha} S]] = (L_0(z_{\alpha} S]]$$

and $(L_0z_0]$ is not contained in M, we have $z_0 \notin (z_\alpha S]$. Since $r(L_0)$ is a maximal right ideal of S, it follows that $S = (z_\alpha S] \cup r(L_0)$. This is a contradiction sine $z_0 \notin r(L_0)$. So we have the claim.

Now, we get $L_0 \subseteq M \subseteq (L_0S]$, and thus $(L_0S] \subseteq (MS] \subseteq (L_0S]$. Since M = (MS], we have $M = (L_0S] = M_0$. This completes the proof.

Corollary 2.10 Let (S,\cdot,\leq) be a dual ordered semigroup with zero 0. Every ideal of S contains (at least one) 0-minimal ideal of S.

Proof. This follows by Theorem 2.9.

Corollary 2.11 Let (S, \cdot, \leq) be a dual ordered semigroup with zero 0. Every maximal left ideal of S contains a maximal ideal of S.

Proof. Let L be a maximal left ideal of S. By Theorem 2.9, the 0-minimal right ideal r(L) is contained in the 0-minimal ideal (Sr(L)]. Since $r(L) \subseteq (Sr(L)] \subseteq S$, we have $0 \subseteq l((Sr(L))) \subseteq L$. By Lemma 2.2, l((Sr(L))) is a maximal ideal of S.

Acknowledgment. The authors would like to thank Professor Klaus Denecke for his suggestions.

References

- [1] R. Baer, Rings with duals, Amer. J. Math., 65 (1943), 569-584.
- [2] G. Birkhoff, Lattice Theory, 25, Rhode Island, American Mathematical Society Colloquium Publications, Am. Math. Soc., Providence, 1984.
- [3] F. F. Bonsall, A. W. Goldie, Annihilator algebra, Proc. London Math. Soc., 4 (1954), 154-167.
- [4] L. Fuchs, Partially Ordered Algebraic Systems. Great Britain: Addison-Wesley Publ. Comp., 1963.
- [5] M. Hall, A type of algebraic closure, Ann. of Math., 40 (1939), 360-369.
- [6] N. Kehayopulu, M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bulletin of Mathematics, 25 (2002), 609-615.
- [7] N. Kehayopulu, M. Tsingelis, *Ideal extensions of ordered semigroups*, Comm. Algebra, 31 (2003), 4939-4969.
- [8] I. Kaplansky, Dual rings, Ann. of Math., 49 (1948), 689-701.
- [9] M. A. Najmark, Normirovannije koljca (Russian), Gostechizdat, Moskva, 1943.
- [10] S. Schwarz, On dual semigroups, Czechoslovak Mathematical Journal, 10(2) (1960), 201-230.
- [11] S. Štefan, On the structures of dual semigroups, Czechslovak Mathematical Journal, 21 (1971), 461-483.

Communicated by Klaus Denecke

Department of Mathematics Faculty of Science Khon Kaen University Khon Kaen, 40002, Thailand

e-mail: thacha@kku.ac.th, jantanan-2903@hotmail.com