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1. INTRODUCTION 

Computing roots of nonlinear equations by iteration is a significant topic for numerical 

analysis. Because of the complicated problems of science, computer science and engineering, it 

cannot find the exact answer by the methods for solving equation. So, iteration is an alternative 

choice to find the answer or it could be called the step of finding root of function x which ( ) 0f x  

it is one of the well-known iteration method for finding answers called Newton-Raphson method 

and Bisection method. The derivative of function must be used for calculating the answer of every 

conducting iteration and has square convergence which is said to be the effective way to find the 

answer quickly. Then, there are a lot of researchers improving Newton-Raphson Method to be 

more convergent and one of them was Homeier[1] who presented the adjusted Newton-Raphson 

Method to have cubic convergence. Changbum and Beny[2] had improved fourth-order 

convergence. G. Mahesh[3] proposed a new method to compute a non-zero real root of the 
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transcendental equations. Besides, there is a bisection method which is marginal specification with 

the notion of finding answers by using the intermediate value theorem to create closed interval 

containing the answers. The convergent sequence is linear, and it can certainly find the answer. 

However, this method could be used to find answer quite slowly, so Sabharwal[4] had improved 

bisection and false position method for finding the answers more swiftly. Kouider[5] presented a 

method of improved bisection and false position for many square root values through R program. 

Ali et al.[6] had improved bisection method by divided n as sub range. Tanakan[7] had improved 

bisection through the notion of Secant Method to find the answer rapidly. Neamvonk[8] has been 

a new method for solving nonlinear equations by using nonlinear regression. Hafiz [9] proposed 

an improved method called BRFC, by the combination of the Bisection, Regula Falsi and parabolic 

interpolation. 

However, the method of marginal specification, square roots converged quite slowly, but 

Newton-Raphson method cannot find the certain answers depending on choosing appropriate 

beginning point, so Altaee, Hoomod and Hussein[10] presented hybrid algorithm among Newton-

Raphson method. Kim, Noh, Oh and Park[11] had created the step of hybrid which used bisection 

and Newton-Raphson method to improve hybrid method of Altaee et al.  

Therefore, this study revealed that the improvement of hybrid among Newton-Raphson 

method and bisection are more effective for convergence than interval or open approach. 

 

2. MAIN RESULTS 

Let f be a continuous function and defined on [a, b] which  ( ) ( ) 0f a f b . Firstly, we set 

 


 


( )1
( )
( )1
( )

f aa a
f a
f bb b
f b

 

we have two main cases:  

case 1: If 1a or 1 [ , ]b a b  , By the bisection method, we have 



2

a bc  .Next, we consider a 
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new subinterval ( *, *)a b  by 

         

* , * , if ( ) ( ) 0
( *, *)

* , * , if ( ) ( ) 0
a c b b f a f c

a b
a a b c f a f c

 

case 2: If 1a or 1 [ , ]b a b  

case 2.1: If  ( 1) ( 1) 0f a f b   then 



1 1
2

a bc  . Next, we consider a new subinterval 

( *, *)a b  by 

         

* 1, * , if ( 1) ( ) 0
( *, *)

* , * 1 , if ( 1) ( ) 0
a a b b f a f c

a b
a c b b f a f c

 

case 2.2: If  ( 1) ( 1) 0,f a f b  we set  * 1, * 1a a b b  and 

   

1 , if ( 1) ( 1)
1 , if ( 1) ( 1)

a f a f b
c

b f a f b
  

 Finally, we choose the new subinterval for the next iteration as follows  *a a  and  *b b   

The process is continued until the interval is sufficiently small or the approximate solution is 

sufficiently close to the exact solution. 

Therefore, we can state the algorithm for finding a solution of nonlinear equation ( ) 0f x  

on an interval [ , ]a b  as follows: 

2.1. The algorithm 

 Hybrid Algorithm (HA) 

 Step 1 : Get ( ), ( ),[ , ]f x f x a b (interval) 

Step 2 :    
 
( ) ( )1 , 1
( ) ( )

f a f ba a b b
f a f b

 

Step 3 : 1a or 1 [ , ]b a b , compute 



2

a bc  and 
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         

* , * , if ( ) ( ) 0
( *, *)

* , * , if ( ) ( ) 0
a c b b f a f c

a b
a a b c f a f c

 

go to Step 6. 

 Step 4 :  ( 1) ( 1) 0f a f b  compute 



1 1
2

a bc  

         

* 1, * , if ( 1) ( ) 0
( *, *)

* , * 1 , if ( 1) ( ) 0
a a b c f a f c

a b
a c b b f a f c

 

go to Step 6. 

 Step 5 :  ( 1) ( 1) 0,f a f b  we set  * 1, * 1a a b b  and 

   

1 , if ( 1) ( 1)
1 , if ( 1) ( 1)

a f a f b
c

b f a f b
 

 Step 6 : If ( )f c  then the zero is c . Stop. 

 Step 7 : Set  *a a  and  *b b  and to Step 2. 

 

3. Numerical examples 

In this section, we compare our proposed methods Bisection Algorithm(BS)[12], Regula Falsi 

Algorithm(RF)[13], Improved Regula Falsi Algorithm(IRF)[13], Bisection Newton-like 

Algorithm(AC)[14], Newton-Raphson Algorithm(NR), Proposed Method(PP) and Hybrid 

Algorithm(HA) we tested the algorithms with the specific examples on Scilab (version 6.1.0) 

program. For the accuracy, we use tolerance error(TOL) less then 101.0 10    and also the 

following criteria is used for estimating the zero ( )f x   

( )f x  Methods Interval No. of iteration ( )f x  

2 5
1( ) (1 )f x x x    

BS 
RF 
IRF 
AC 
NR 

[0.1, 1] 
[0.1, 1] 
[0.1, 1] 
[0.1, 1] 

0.1 

33 
20 
5 
6 
5 

3.29e-11 
4.83e-11 
1.74e-14 
3.22e-13 
0.00e+00 
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( )f x  Methods Interval No. of iteration ( )f x  

PP 
HA 

0.1 
[0.1, 1] 

4 
4 

6.93e-17 
8.78e-12 

3
2( ) cos( )f x x x   

BS 
RF 
IRF 
AC 
NR 
PP 

HA 

[0.1, 1] 
[0.1, 1] 
[0.1, 1] 
[0.1, 1] 

0.1 
0.1 

[0.1, 1] 

34 
12 
5 

34 
10 
19 
4 

4.65e-11 
3.59e-11 
1.82e-11 
4.65e-11 
2.95e-12 
1.17e-12 
5.22e-15 

3( ) 1xf x xe   

BS 
RF 
IRF 
AC 
NR 
PP 

HA 

[-1, 1] 
[-1, 1] 
[-1, 1] 
[-1, 1] 

-1 
-1 

[-1, 1] 

34 
22 
6 
8 
2 
1 
5 

2.84e-11 
3.37e-11 
3.33e-16 
2.27e-11 
0.00e+00 
0.00e+00 
2.22e-16 

2
4( ) 3 2xf x x e x     

BS 
RF 
IRF 
AC 
NR 
PP 

HA 

[-2, 2] 
[-2, 2] 
[-2, 2] 
[-2, 2] 

-2 
-2 

[-2, 2] 

36 
19 
4 

36 
5 
  

3 

4.95e-11 
9.11e-11 
1.09e-13 
4.95e-11 
0.00e+00 

  

1.15e-12 

5( ) sin( )
2
xf x x   

BS 
RF 
IRF 
AC 
NR 
PP 

HA 

[-3, 5] 
[-3, 5] 
[-3, 5] 
[-3, 5] 

-3 
-3 

[-3, 5] 

35 
24 
11 
35 
5 
5 
5 

6.36e-11 
4.32e-11 
1.65e-11 
6.36e-11 
0.00e+00 
1.32e-13 
0.00e+00 

3
6( )f x x  

BS 
RF 
IRF 
AC 
NR 
PP 
HA 

[-0.5, 1/3] 
[-0.5, 1/3] 
[-0.5, 1/3] 
[-0.5, 1/3] 

-0.5 
-0.5 

[-0.5, 1/3] 

9 
579117 
463465 

7 
18 
20 
7 

3.44e-11 
1.00e-10 
1.00e-10 
7.84e-11 
3.87e-11 
3.93e-11 
4.43e-13 
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4. Conclusions 

We presented a class of Hybrid Algorithm methods for finding simple zeros of nonlinear 

equations. In this paper, an algorithm Hybrid Algorithm is developed for computational purposes. 

The algorithm is tested on a number of numerical examples and the results obtain up to the desire 

accuracy are compared with the other methods. It is observed that our method takes a smaller 

number of iterations and more effective in comparison with these methods. 
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